Grupo 4
Técnicas Estadísticas No Paramétricas y de Computación Intensiva
Publicaciones (21)
-
Ieva, F; Ronzulli, M; Romo, J; Paganoni, AM.
A Spearman dependence matrix for multivariate functional data
JOURNAL OF NONPARAMETRIC STATISTICS. 2024; 37(1): 82-104 Nº de citas: 1 [doi:10.1080/10485252.2024.2353615]
-
Albert-Smet, J; Torrente, A; Romo, J.
Band depth based initialization of K-means for functional data clustering
Advances in Data Analysis and Classification. 2023; 17(2): 463-484 Nº de citas: 2 [doi:10.1007/s11634-022-00510-w]
-
Aleman-Gomez, Y; Arribas-Gil, A; Desco, M; Elias, A; Romo, J.
Depthgram: Visualizing outliers in high-dimensional functional data with application to fMRI data exploration
STATISTICS IN MEDICINE. 2022; 41(11): 2005-2024 Nº de citas: 7 [doi:10.1002/sim.9342]
-
Torrente, A; Romo, J.
Initializingk-means Clustering by Bootstrap and Data Depth
JOURNAL OF CLASSIFICATION. 2021; 38(2): 232-256 Nº de citas: 26 [doi:10.1007/s00357-020-09372-3]
-
Strzalkowska-Kominiak, E; Romo, J.
Censored functional data for incomplete follow-up studies
STATISTICS IN MEDICINE. 2021; 40(12): 2821-2838 Nº de citas: 3 [doi:10.1002/sim.8930]
-
Laria, JC; Aguilera-Morillo, MC; Alvarez, E; Lillo, RE; Lopez-Taruella, S; del Monte-Millan, M; Picornell, AC; Martin, M; Romo, J.
Iterative Variable Selection for High-Dimensional Data: Prediction of Pathological Response in Triple-Negative Breast Cancer
Mathematics. 2021; 9(3): Nº de citas: 3 [doi:10.3390/math9030222]
-
Aguilera-Morillo, MC; Buno, I; Lillo, RE; Romo, J.
Variable selection with P-splines in functional linear regression: Application in graft-versus-host disease
BIOMETRICAL JOURNAL. 2020; 62(7): 1670-1686 Nº de citas: 3 [doi:10.1002/bimj.201900189]
-
Ieva, F; Paganoni, AM; Romo, J; Tarabelloni, N.
roahd Package: Robust Analysis of High Dimensional Data
R Journal. 2019; 11(2): 291-307 Nº de citas: 2
-
Valencia, D; Lillo, RE; Romo, J.
A Kendall correlation coefficient between functional data
Advances in Data Analysis and Classification. 2019; 13(4): 1083-1103 Nº de citas: 37 [doi:10.1007/s11634-019-00360-z]
-
Martinez-Laperche, C; Buces, E; Aguilera-Morillo, MC; Picornell, A; Gonzalez-Rivera, M; Lillo, R; Santos, N; Martin-Antonio, B; Guillem, V; Nieto, JB; Gonzalez, M; de la Camara, R; Brunet, S; Jimenez-Velasco, A; Espigado, I; Vallejo, C; Sampol, A; Bellon, JM; Serrano, D; Kwon, M; Gayoso, J; Balsalobre, P; Urbano-Izpizua, A; Solano, C; Gallardo, D; Diez-Martin, JL; Romo, J; Buno, I.
A novel predictive approach for GVHD after allogeneic SCT based on clinical variables and cytokine gene polymorphisms
Blood Advances. 2018; 2(14): 1719-1737 Nº de citas: 20 [doi:10.1182/bloodadvances.2017011502]
-
Azcorra, A; Chiroque, LF; Cuevas, R; Anta, AF; Laniado, H; Lillo, RE; Romo, J; Sguera, C.
Unsupervised Scalable Statistical Method for Identifying Influential Users in Online Social Networks
Scientific Reports. 2018; 8: Nº de citas: 10 [doi:10.1038/s41598-018-24874-2]
-
Torrecilla, JL; Romo, J.
Data learning from big data
STATISTICS & PROBABILITY LETTERS. 2018; 136: 15-19 Nº de citas: 21 [doi:10.1016/j.spl.2018.02.038]
-
Flores, R; Lillo, R; Romo, J.
Homogeneity test for functional data
JOURNAL OF APPLIED STATISTICS. 2018; 45(5): 868-883 Nº de citas: 11 [doi:10.1080/02664763.2017.1319470]
-
Martin-Barragan, B; Lillo, RE; Romo, J.
Functional boxplots based on epigraphs and hypographs
JOURNAL OF APPLIED STATISTICS. 2016; 43(6): 1088-1103 Nº de citas: 11 [doi:10.1080/02664763.2015.1092108]
-
Moreno, M; Romo, J.
Robust unit root tests with autoregressive errors
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS. 2016; 45(20): 5997-6021 Nº de citas: 1 [doi:10.1080/03610926.2014.955114]
-
Torres, R; Lillo, RE; Laniado, H.
A directional multivariate value at risk
INSUR MATH ECON. 2015; 65: 111-123 Nº de citas: 19 [doi:10.1016/j.insmatheco.2015.09.002]
-
Torrado, N; Lillo, RE.
Likelihood ratio comparisons among spacings related to both one or two samples
STATISTICS. 2015; 49(4): 831-841 Nº de citas: 2
-
Arribas-Gil, A; De la Cruz, R; Lebarbier, E; Meza, C.
Classification of longitudinal data through a semiparametric mixed-effects model based on lasso-type estimators
BIOMETRICS. 2015; 71(2): 333-343 Nº de citas: 14 [doi:10.1111/biom.12280]